Existence, uniqueness, and convergence of the regularized primal-dual central path

نویسندگان

  • Jordi Castro
  • Jordi Cuesta
چکیده

In a recent work [3] the authors improved one of the most efficient interior-point approaches for some classes of block-angular problems. This was achieved by adding a quadratic regularization to the logarithmic barrier. This regularized barrier was shown to be self-concordant, thus fitting the general structural optimization interior-point framework. In practice, however, most codes implement primal-dual path-following algorithms. This short paper shows that the primal-dual regularized central path is well defined, i.e., it exists, it is unique, and it converges to a strictly complementary primal-dual solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primal-dual path-following algorithms for circular programming

Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...

متن کامل

Optimization of Solution Regularized Long-wave Equation by Using Modified Variational Iteration Method

In this paper, a regularized long-wave equation (RLWE) is solved by using the Adomian's decomposition method (ADM) , modified Adomian's decomposition method (MADM), variational iteration method (VIM), modified variational iteration method (MVIM) and homotopy analysis method (HAM). The approximate solution of this equation is calculated in the form of series which its components are computed by ...

متن کامل

A primal-dual semi-smooth Newton method for nonlinear L data fitting problems

This work is concerned with L 1 data fitting for nonlinear inverse problems. This formulation is advantageous if the data is corrupted by impulsive noise. However, the problem is not differentiable and lacks local uniqueness, which makes its efficient solution challenging. By considering a regularized primal-dual formulation of this problem, local uniqueness can be shown under a second order su...

متن کامل

Asymptotic convergence of constrained primal-dual dynamics

This paper studies the asymptotic convergence properties of the primal-dual dynamics designed for solving constrained concave optimization problems using classical notions from stability analysis. We motivate the need for this study by providing an example that rules out the possibility of employing the invariance principle for hybrid automata to study asymptotic convergence. We understand the ...

متن کامل

Interior Point Methods in Function Space

A primal-dual interior point method for optimal control problems is considered. The algorithm is directly applied to the infinite-dimensional problem. Existence and convergence of the central path are analyzed, and linear convergence of a short-step path-following method is established.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Oper. Res. Lett.

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2010